
Building a Next-
Generation App Store
Jason Franklin Ph.D.
jfrankli@cs.stanford.edu
Research Associate
Stanford University

App Store: Promise

Safe, Trusted, Centralized

!
?

?
?

?

!

:)

App Stores: Reality

"Permissions changed in the latest update to read
my phone number. Totally unacceptable for a
puzzle game. Uninstalling." [1]

[1] Oh, My Brain! Block Buzzle by mToy, https://play.google.com/store/apps/details?id=biz.mtoy.blockpuzzle&feature=related_apps#?
t=W251bGwsMSwxLDEwOSwiYml6Lm10b3kuYmxvY2twdXp6bGUiXQ..

"Uninstalling due to the
added permissions." [1]

"Simple and challenging game but with new update there is too many Permissions for a
simple game, will not be updating and once completed all levels I will be deleting it." [1]

"Why suddenly
Read phone state

permission?" [1]

Anatomy of an App Store

Submit Accept

R
eject

Distribute

Developers Admission
System

Storage Users

exec()

Rejects

!

:)

!:) ?

STAMP Admission System

Static

Dynamic

STAMP

Static Analysis

More behaviors, fewer details

Dynamic Analysis

Fewer behaviors, more details

STAMP as a Service

STAMP
Engine

Dynamic
Analysis
Results

Custom
Android

Impl.

App

Summary

? Logs

Updates

Analyst

Static vs. Dynamic Analysis

● Can be faster
○ Google Bouncer (dynamic): 300 seconds
○ Unopt. STAMP: ~40 seconds

● Detects more behaviors
○ Closer to 100% coverage

● No code execution
○ Avoid configuration issues, VMs/emulators, and

input generation while always getting results

Data Flow

getLoc() sendSMS()

sendInet()

Source:
Location Sink: SMS

Sink: Internet

Location SMS Location Internet

● Source-to-sink flows
○ Sources: Location, Calendar, Contacts, Device ID etc.
○ Sinks: Internet, SMS, Disk, etc.

Data Flow Analysis in Action

● Vulnerability Discovery

Privacy Policy
This app collects your:
Contacts
Phone Number
Address

FB API Send
Internet

Source:
FB_Data Sink: Internet

Web Source:
Untrusted_Data SQL Stmt Sink: SQL

● Malware/Greyware Analysis
○ Data flow summaries enable enterprise-specific policies

● API Misuse and Data Theft Detection

● Automatic Generation of App Privacy Policies
○ Avoid liability, protect consumer privacy

Challenges

● Android is 3.4M+ lines of complex code
○ Uses reflection, callbacks, native code

● Scalability: Whole system analysis impractical

● Soundness: Avoid missing flows

● Precision: Minimize false positives

STAMP Approach

● Model Android/Java
○ Sources and sinks
○ Data structures
○ Callbacks
○ 500+ models

● Whole-program analysis
○ Context sensitive

STA
M

P

Android

Models

App App

Too expensive!

OS

HW

Building Models

● 30k+ methods in Java/Android API
○ Reimplement w. minimum necessary details

● Follow the permissions
○ 20 permissions for sensitive sources

■ ACCESS_FINE_LOCATION (8 methods with source annotations)
■ READ_PHONE_STATE - (9 methods)

○ 4 permissions for sensitive sinks
■ INTERNET, SEND_SMS, etc.

Identifying Sensitive Data

● Returns device IMEI in String
● Requires permission GET_PHONE_STATE

@STAMP(
 SRC ="$GET_PHONE_STATE.deviceid",
 SINK ="@return"
)

android.Telephony.TelephonyManager: String getDeviceId()

Data We Track (Sources)

● Account data
● Audio
● Calendar
● Call log
● Camera
● Contacts
● Device Id
● Location
● Photos (Geotags)
● SD card data
● SMS

30+ types of
sensitive data

Data Destinations (Sinks)

● Internet (socket)
● SMS
● Email
● System Logs
● Webview/Browser
● File System
● Broadcast Message

10+ types of
exit points

Currently Detectable Flow Types

Unique Flow Types = Sources x Sink

396 Flow Types

Example: Facebook Contact Sync

Contact Sync for Facebook (unofficial)

Description:
This application allows you to synchronize
your Facebook contacts on Android.

IMPORTANT:
* "Facebook does not allow [sic] to export phone
numbers or emails. Only names, pictures and statuses
are synced."
* "Facebook users have the option to block one or all
apps. If they opt for that, they will be EXCLUDED from
your friends list."

Privacy Policy: (page not found)

Contact Sync Permissions
Category Permission Description

Your Accounts AUTHENTICATE_ACCOUNTS Act as an account authenticator

MANAGE_ACCOUNTS Manage accounts list

USE_CREDENTIALS Use authentication credentials

Network Communication INTERNET Full Internet access

ACCESS_NETWORK_STATE View network state

Your Personal Information READ_CONTACTS Read contact data

WRITE_CONTACTS Write contact data

System Tools WRITE_SETTINGS Modify global system settings

WRITE_SYNC_SETTINGS Write sync settings (e.g. Contact sync)

READ_SYNC_SETTINGS Read whether sync is enabled

READ_SYNC_STATS Read history of syncs

Your Accounts GET_ACCOUNTS Discover known accounts

Extra/Custom WRITE_SECURE_SETTINGS Modify secure system settings

Possible Flows from Permissions

Sources Sinks

INTERNETREAD_CONTACTS

WRITE_SETTINGSREAD_SYNC_SETTINGS

WRITE_CONTACTSREAD_SYNC_STATS

GET_ACCOUNTS WRITE_SECURE_SETTINGS

WRITE_SETTINGSINTERNET

Expected Flows

Sources Sinks

INTERNETREAD_CONTACTS

WRITE_SETTINGSREAD_SYNC_SETTINGS

WRITE_CONTACTSREAD_SYNC_STATS

GET_ACCOUNTS WRITE_SECURE_SETTINGS

WRITE_SETTINGSINTERNET

Observed Flows

FB API
Write

Contacts

Send Internet

Source:
FB_Data

Sink:
Contact_Book

Sink: InternetRead
Contacts

Source:
Contacts

Conclusion

● Exploring space of admission systems

● Fast, practical static data flow analysis

● Dynamic analysis collects concrete values
○ Users test drive apps, we collect data

● Warning system identifies violated assumptions
○ Dynamic code loading, reflection, and anti-analysis techniques

Interested in STAMP?
Contact:
Jason Franklin
jfrankli@cs.stanford.edu

Credits:
Alex Aiken,
John Mitchell,
Saswat Anand,
Osbert Bastani,
Lazaro Clapp,
Patrick Mutchler,
Manolis Papadakis

